Article ID Journal Published Year Pages File Type
5365885 Applied Surface Science 2008 6 Pages PDF
Abstract
Titanium films of 80 nm thickness were deposited on stainless steel type 304, and they were post-annealed under flow of oxygen at different temperatures. The prepared samples were corrosion tested in 1.0 M H2SO4 solution using potentiodynamic and galvanometric polarization technique. The variation of corrosion resistance of these samples showed that the optimum annealing temperature is 473 K. The reduction of corrosion resistance of the sample with increasing the temperature above 473 K is attributed to the phenomena which are confirmed by AFM results: (a) increase of surface roughness, and (b) formation of larger grains with large grooves between them on the film surface. Hence larger effective surfaces for chemical reactions are provided. The films' crystallographic and morphological structures were analysed using XRD and AFM, respectively before corrosion test and SEM after corrosion test. It is observed that the crystallographic structure of the film goes through a sudden change at 943 K annealing temperature and three phases of titanium oxide (i.e., rutile, anatase and brookite) are formed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,