Article ID Journal Published Year Pages File Type
5366001 Applied Surface Science 2007 4 Pages PDF
Abstract

The ion flux dependence of the self-organized Si nanodots induced by 1.5 keV Ar+ ion sputter erosion has been studied. It shows that for the regime with ion flux >∼280 μA/cm2, the currently adopted Bradley-Harper (BH) model, which is incorporated in a dynamic continuum equation holds valid. However, for ion flux <∼280 μA/cm2, the measured dot size and surface roughness deviate drastically from the BH model. To interpret the data for this lower ion flux regime, the effect of the Ehrlich-Schwoebel (ES) step-edge barrier was introduced into the continuum equation. A consistency between the calculated and the experimental results was reached, furthermore, a reasonable trend was found, that is, the effective ES diffusion decreases steadily with the increasing ion flux, and at ∼280 μA/cm2, it became negligibly small.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,