Article ID Journal Published Year Pages File Type
5366244 Applied Surface Science 2009 6 Pages PDF
Abstract

By using different dual-template combinations, four types of mesoporous silica materials with different morphologies were successfully synthesized. A solid-sphere mesoporous (SSM) silica was obtained using a combination of tri-block copolymer (F127) and 1,12-diaminododecane (DADD), but when F127 was substituted with poly(vinylpyrrolidone) (PVP), a leaf-shaped mesoporous (LSM) silica was obtained. In addition, a hollow-sphere mesoporous (HSM) silica was obtained by using a combination of PVP and dodecylamine (DDA), but a cotton-like mesoporous (CLM) silica was obtained using F127 instead of PVP. All four types of synthesized materials were characterized by SEM, TEM, XRD, and N2 adsorption-desorption isotherms, and the results showed that all of them exhibited high surface area, large pore volume, worm-like pore structure, and beautiful shapes. The results of storage experiments revealed that the HSM and CLM showed good adsorption and storage properties. The HSM (the largest pore volume) seemed to have the larger storage capacity when compared to the CLM, albeit CLM had the highest surface area among all.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,