Article ID Journal Published Year Pages File Type
5366306 Applied Surface Science 2006 4 Pages PDF
Abstract
We report here on changes in magnetism and microstructure when implanting, at 92 or 300 K, up to 5 × 1015 Au26+-ions cm−2 of 350 MeV into natFe(45 nm)/57Fe(20 nm)/Si trilayers. This choice of ions and energy allowed to test the irradiation effects in the regime of pure electronic stopping. The samples were analysed before and after irradiation by Rutherford back-scattering spectroscopy, X-ray diffraction, conversion electron Mössbauer spectroscopy, and magneto-optical Kerr effect. Up to 1 × 1015 ions cm−2, there was interface broadening at a mixing rate of Δσ2/Φ = 55(5) nm4, followed by full Fe-Si inter-diffusion. The Mössbauer spectra revealed fractions of α-Fe and amorphous ferromagnetic and paramagnetic iron silicides, but no crystalline Fe-Si phase. The magnetic remanence in the as-deposited Fe-layer showed small components of uniaxial and four-fold magnetization. For increasing ion fluence, the component with four-fold symmetry grew at the expense of the uniaxial component. For the highest fluences, an isotropic magnetization was found.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,