Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5366449 | Applied Surface Science | 2007 | 6 Pages |
A laser-induced forward transfer technique has been applied for the maskless patterning of amorphous V2O5 thin films. A sheet beam of a frequency doubled (SHG) Q-switched Nd:YAG laser was irradiated on a transparent glass substrate (donor), the rear surface of which was pre-coated with a vacuum-deposited V2O5 180Â nm thick film was either in direct contact with a second glass substrate (receiver) or a 0.14Â mm air-gap was maintained between the donor film and the receiving substrate. Clear, regular stripe pattern of the laser-induced transferred film was obtained on the receiver. The pattern was characterized using X-ray diffraction (XRD), optical absorption spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), atomic force microscopy (AFM), etc.