Article ID Journal Published Year Pages File Type
5366706 Applied Surface Science 2006 7 Pages PDF
Abstract

Rare-earth oxide films for gate dielectric on n-GaAs have been investigated. The oxide films were e-beam evaporated on S-passivated GaAs, considering interfacial chemical bonding state and energy band structure. Rare-earth oxides such as Gd2O3, (GdxLa1−x)2O3, and Gd-silicate were employed due to high resistivity and no chemical reaction with GaAs. Structural and bonding properties were characterized by X-ray photoemission, absorption, and diffraction. The electrical characteristics of metal-oxide-semiconductor (MOS) diodes were correlated with material properties and energy band structures to guarantee the feasibility for MOS field effect transistor (FET) application.Gd2O3 films were grown epitaxially on S-passivated GaAs (0 0 1) at 400 °C. The passivation induced a lowering of crystallization temperature with an epitaxial relationship of Gd2O3 (4 4 0) and GaAs (0 0 1). A better lattice matching relation between Gd2O3 and GaAs substrate was accomplished by the substitution of Gd with La, which has larger ionic radius. The in-plane relationship of (GdxLa1−x)2O3 (4 4 0) with GaAs (0 0 1) was found and the epitaxial films showed an improved crystalline quality. Amorphous Gd-silicate film was synthesized by the incorporation of SiO2 into Gd2O3. These amorphous Gd-silicate films excluded defect traps or current flow path due to grain boundaries and showed a relatively larger energy band gap dependent on the contents of SiO2. Energy band parameters such as ΔEC, ΔEV, and Eg were effectively controlled by the film composition.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,