Article ID Journal Published Year Pages File Type
5366787 Applied Surface Science 2011 8 Pages PDF
Abstract

Mesoporous silica (MPS) materials with different pore diameters were synthesized by a sol-gel method where organic templates such as cationic surfactant (cetyltrimethylammonium bromide) and triblock co-polymer of (poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (Pluronic P123, EO20PO70EO20)), were used. MPS surface was organo-functionalized using a silane coupling reagent (ethyl-, phenyl-, or 3-mercaptpropyltriethoxysilane). Dual-enzyme, cholesterol esterase (10.0 nm × 5.4 nm × 11.0 nm) and cholesterol oxidase (6.8 nm × 8.5 nm × 8.8 nm), was immobilized on MPS materials by physical adsorption. Amount of dual-enzyme immobilized on all MPS materials, having a different pore size (2.7, 6.4, 12.4, 14.7, and 22.6 nm), and organo-functionalized MPS was similar (CE: 1.5 mg/mg silica and CO: 0.01 mg/mg silica). High activity of dual-enzyme was obtained by adjacently immobilizing on MPS materials. Its activity on MPS-2 (pore diameter: 6.4 nm) or MPS-5 (pore diameter: 22.6 nm) showed approximately 60% of native activity. Moreover, dual-enzyme immobilized on MPS with highly hydrophobic organo-functional groups (phenyl- or mercaptopropyl-group) exhibited higher activity than that on no-substituted MPS. Relative activity of dual-enzyme immobilized on organo-functionalized MPS-2 increased from 58% to 93%, under the optimum conditions.

► Immobilization of dual-enzyme onto mesoporous silica material was influenced by size of mesopore. ► Catalytic activity of dual-enzyme was increased when enzymes were adjacently immobilized on mesoporous silica material. ► Secondary and tertiary structures of cholesterol esterase immobilized on mesoporous silica materials were not significantly different by comparison with native cholesterol esterase.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,