Article ID Journal Published Year Pages File Type
5366830 Applied Surface Science 2009 5 Pages PDF
Abstract

The microstructural characterization of Ga-doped (5 at.%) ZnO thin film was conducted by a transmission electron microscopy study. The atomic arrangement of Ga-doped ZnO having an wurtzite structure was identified by the experimental HRTEM and Fourier filtered images as well as the electron diffractions. As a result, we have revealed that the orientation and defect density of Ga-doped ZnO thin films were greatly influenced by the deposition temperature, resulting in the variation of electrical property. In other words, the tendency forming a c-axis oriented texture grows up and the defects such as dislocations and stacking faults decrease, as the temperature of sputtering deposition increases. Consequently, the electrical properties of Ga-doped ZnO thin films can be controlled by the deposition temperature directly related with the defect density.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,