Article ID Journal Published Year Pages File Type
5367061 Applied Surface Science 2009 6 Pages PDF
Abstract

Well-ordered TiO2 nanotube arrays were prepared by electrochemical anodization of titanium in aqueous electrolyte solution of H3PO4 + NH4F at a constant voltage of 20 V for 3 h, followed by calcined at various temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) were used to characterize the samples. The results showed that the as-prepared nanotube arrays before being calcined were amorphous and could transform to anatase phase at a heat treatment temperature higher than 400 °C. As the calcination temperatures increased, crystallization of anatase phase enhanced and rutile phase appeared at 600 °C. However, further increasing the calcination temperature would cause the collapse of nanotube arrays. PL intensity of the nanotube arrays annealed at 500 °C was the lowest, which was probably ascribed to better crystallization together with fewer surface defects of the nanotube arrays.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,