Article ID Journal Published Year Pages File Type
5367590 Applied Surface Science 2009 4 Pages PDF
Abstract

Superconducting polycrystalline BSCCO fibers of 2:2:1:2 nominal composition were grown by the electrically assisted laser floating zone (EALFZ) technique. An electric current density of 2.1 A cm−2 was applied through the solid/liquid (S/L) interface. A net effect of the fiber diameter on the as-grown microstructure and on the final superconducting properties is observed. A higher critical current density (∼2520 A cm−2) results for the thinner fibers (ϕ = 1.7 mm) comparing to the value (∼1065 A cm−2) found for the wider ones (ϕ = 2.5 mm). The steep axial thermal gradient at the S/L interface in the thinner fibers is responsible for its superior texture degree, a crucial parameter for improved current transport properties. Moreover, a Cu-free Bix(Sr,Ca)yOz phase crystallizes preferentially from the melt in the wider fibers, acting as obstacles to the current flux.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,