Article ID Journal Published Year Pages File Type
5367595 Applied Surface Science 2009 5 Pages PDF
Abstract
Selective laser melting (SLM) allows manufacturing porous 3D parts with customized near-net shape and internal geometry designed at the stage of their computer modeling. The relations between laser operational parameters, computer design of the manufacturing object, composition and microstructure of the obtained fine porous structures are discussed. A series of experiments are carried out on PHENIX PM-100 machine to analyze the influence of the manufacturing strategy on anisotropy and regularity of the internal structure of samples from stainless steel, nickel alloys and metal-polymer powders. The issues of accurate reproduction of the parts geometry, strategy of manufacturing thin-walled 3D filters and filters with customized pattern of the micron-sized channels are addressed. Effect of the porous structure on the material filtering performance is analyzed in order to optimize and diversify design of the porous materials for a given application and to improve their operational behavior.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,