Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5367629 | Applied Surface Science | 2006 | 11 Pages |
Surface modification of poly(ethylene terephthalate) (PET) fabrics induced by air radiofrequency (RF) plasma treatment has been investigated systematically as a function of plasma device parameters, to identify the plasma-polymer surface interactions prevailing under different operating conditions and leading to an increased color depth upon dyeing. Some tests have also been performed employing chemically inert argon as a feedstock gas. The dyeing properties of plasma-treated fibers were correlated to their topographical characteristics, determined by AFM analysis, and to their chemical surface composition, determined by XPS analysis, while the plasma-originated UV radiation was found to have no relevant effects in PET surface modification. The relative importance of plasma-induced surface processes, such as etching and grafting of polar species, is discussed in relation to their role in modifying PET dyeing properties.