Article ID Journal Published Year Pages File Type
5367995 Applied Surface Science 2007 7 Pages PDF
Abstract

Using molecular dynamics simulations and the analytic embedded-atom method (AEAM), the surface anharmonicity of B2-FeAl(1 1 0) has been studied in the temperature range from 0 K to 1400 K. The temperature dependence of the interlayer spacing, mean square vibrational amplitudes, surface phonon frequencies and line-widths, and layer structure factor have been calculated. The obtained results indicate that the anharmonic effects are small in the temperature range from 0 K to 900 K. The temperature dependences of the interlayer spacing indicates that the rippling effect of the B2-FeAl(1 1 0) surface is exhibited by the contraction of Fe surface atoms and the expansion of Al atoms, which persists at high temperatures. The temperature dependence of the layer structure factors shows that the B2-FeAl(1 1 0) surface does not disorder until the temperature of 1300 K.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,