Article ID Journal Published Year Pages File Type
5368237 Applied Surface Science 2010 5 Pages PDF
Abstract

We have used in situ photoemission spectroscopy to investigate Niobium doping in polycristalline BaTiO3. The valence band maximum position progressively shifts from 2.5 eV for undoped to 2.84 eV for Nb-doped films. Ceramics and single crystal have been investigated for comparison with thin films. Nb-doped BaTiO3 ceramics and Nb-doped SrTiO3 single crystal show higher Fermi level position indicating that our doped films are less conducting regarding their bulk parents. This was confirmed by impedance spectroscopy under variable temperature. Large amount of niobium is clearly observable at surface but the amount of dopant is drastically reduced below the near-surface region, as evidenced by depth profile. Therefore, we provide evidence of surface segregation which would explain the contrasted resistivity values reported in literature for such donor-doped films.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,