Article ID Journal Published Year Pages File Type
5368238 Applied Surface Science 2010 4 Pages PDF
Abstract

Nitrogen-doped nanocrystalline diamond (NNCD) films were deposited onto p-type silicon substrates with three different layer structures: (i) directly onto the silicon substrate (NNCD/Si), (ii) silicon with undoped nanocrystalline diamond layer which was deposited in the same way as the above mentioned NNCD by the recipe Ar/CH4/H2 with a ratio of 98%/1%/1% (NNCD/NCD/Si), and (iii) silicon wafer with 100 nm thickness SiO2 layer (NNCD/SiO2/Si). Atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy were employed to characterize the morphology and microstructure of the as-grown nitrogen-doped diamond films. Silver colloid/silver contacts were made at to measure the current-voltage (I-V) characteristics for the three different structures. Electrons from a CVD reactor hydrogen plasma diffuse toward the p-type silicon substrate during a deposition process under the high temperature (∼800 °C). The study concluded that the SiO2 layer could effectively prevents the diffusion of electrons.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,