Article ID Journal Published Year Pages File Type
5368742 Applied Surface Science 2010 10 Pages PDF
Abstract

Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,