Article ID Journal Published Year Pages File Type
5368753 Applied Surface Science 2010 5 Pages PDF
Abstract

Molybdenum oxide (MoO3) films were deposited on glass and (1 1 1) silicon substrates by sputtering of metallic molybdenum target in an oxygen partial pressure of 2 × 10−4 mbar and different substrate temperatures in the range 303-623 K using dc magnetron sputtering technique. X-ray photoelectron spectrum of the films formed at 303 K showed asymmetric Mo 3d5/2 and Mo 3d3/2 peaks due to the presence of mixed oxidation states of Mo5+ and Mo6+ while those deposited at substrate temperatures ≥473 K were in Mo6+ oxidation state of MoO3. The films formed at substrate temperatures ≥473 K were polycrystalline in nature with orthorhombic α-phase MoO3. Fourier transform infrared spectra of the films showed an absorption band at 1000 cm−1 correspond to the stretching vibration of MoO, the characteristic of the α-MoO3 phase. The electrical resistivity increased from 3.3 × 103 to 8.3 × 104 Ω cm with the increase of substrate temperature from 303 to 473 K respectively due to improvement in the crystallinity of the films. Optical band gap of the films increased from 3.03 to 3.22 eV with the increase of substrate temperature from 303 to 523 K.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,