Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5368807 | Applied Surface Science | 2006 | 4 Pages |
As high-energy cluster projectile beams become standard analysis probes for SIMS, simulating larger crystals is now a requirement for the modeling community due to the large sputtering yields. As crystals get larger, computer resources become a limitation. Even though computer technology has evolved to include large memory systems and fast processors, there are still issues with having sufficient resources to run a calculation. This manuscript reports a method of studying a full crystal of benzene after impact with a 500Â eV C60 projectile using a coarse-grained model. The potentials developed for this model incorporate the CH bond of benzene into a single coarse-grained bead. This coarse-grained method has several advantages over atomistic models-the amount of time to perform these calculations has been drastically reduced and the potentials for this sample are pair-wise additive potentials. A discussion is made as to how these results compare to those obtained with fully atomistic calculations using the AIREBO potential.