Article ID Journal Published Year Pages File Type
5369093 Applied Surface Science 2006 7 Pages PDF
Abstract

The application of an electrical current during solidification by laser floating zone (LFZ) technique of superconducting fibres of the Bi-Sr-Ca-Cu-O system was recently proposed as a very suitable method to improve crystal alignment. This novel electrical assisted laser floating zone (EALFZ) technique also leads to a strong modification on the phase nature. In the present study, the effect of the annealing time at 860 °C on superconducting properties of Bi2Sr2Ca2Cu4O11 nominal composition fibres was investigated. Two sets of samples, grown by LFZ and EALFZ using an electric current of 150 mA, were annealed at three different times (24, 96 and 192 h). The critical current density values revealed to be strongly dependent on the 2223 phase amount and on crystal orientation. Current application during the solidification process favours the early development of the 2223 phase, while long annealing times are required in the conventional LFZ processed fibre. The highest critical current density was achieved for the EALFZ fibres annealed during 192 h due to the 2223 stoichiometry optimization and decreasing of second phases.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,