Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5369106 | Applied Surface Science | 2006 | 6 Pages |
Abstract
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films' composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352Â GPa at 6.2Â at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films' mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Yunshan Dong, Wenji Zhao, Yirui Li, Geyang Li,