Article ID Journal Published Year Pages File Type
5369185 Applied Surface Science 2009 6 Pages PDF
Abstract

Three different techniques were used to produce thin oxide layers on polished and sputter-cleaned duplex stainless-steel samples. These samples were exposed to 10−5 mbar of pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 h, and plasma oxidized. The oxide layers thus produced were analysed using XPS depth profiling in order to determine the oxide layers' compositions with depth. We found that all the techniques produce oxide layers with different traces of metallic components and with the maximum concentration of chromium oxide shifted towards the oxide-layer-bulk-metal interface. A common characteristic of all the oxide layers investigated is a double-oxide stratification, with regions closer to the surface exhibiting higher concentrations of iron oxide and those more in-depth exhibiting higher concentrations of chromium oxide. A simple non-destructive Thickogram procedure was used to corroborate the thickness estimates for the thinnest oxide layers.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,