Article ID Journal Published Year Pages File Type
5369299 Applied Surface Science 2006 6 Pages PDF
Abstract

Pulse shaping introduces the method that makes possible the production of tunable arbitrary shaped pulses. We extend this method to control the prevalent growth of cubic SiC films on Si (1 0 0) substrates by pulsed laser deposition at temperatures around 973 K from a SiC target in vacuum. We used a laser system generating 200 fs pulses duration at 800 nm with 600 μJ at 1 kHz. The obtained structures are investigated by electron microscopy, X-ray diffraction and profilometry. We observed grains embedded in an amorphous texture, characteristic in our opinion to the depositions obtained with very short pulses. We present a comparison of deposited films with and without pulse shaping. Pulse shaping promotes increased crystallization and results in the deposition of thin structures of cubic SiC with a strongly reduced density of particulates, under similar deposition conditions.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , ,