Article ID Journal Published Year Pages File Type
5369527 Applied Surface Science 2008 5 Pages PDF
Abstract

Quasi-monocrystalline porous silicon (QMPS) has high potential for photovoltaic application for its enhanced optical absorption compared to bulk silicon in the visible range of solar spectrum. In this study, QMPS was formed from low porosity (∼20-30%) porous silicon (PS) produced by electrochemical anodization, and thermal annealing in the temperature range 1050-1100 °C under pure hydrogen ambient for a duration of 30 min. We analyzed the material surface by grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and dynamic secondary ion mass spectroscopy (SIMS) study. The crystallinity was confirmed by GIXRD while FESEM studies revealed that the surface layer is pore free with voids embedded inside the body. AFM studies indicated relatively smooth and uniform surface and the dynamic SIMS study showed the depth profiles of impurities present in the material.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,