Article ID Journal Published Year Pages File Type
5369582 Applied Surface Science 2007 5 Pages PDF
Abstract

Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing patterns of diverse materials with a high degree of spatial resolution. In conventional LIFT a small fraction of a solid thin film is vaporized by means of a laser pulse focused on the film through its transparent holder, and the resulting material recondenses on the receptor substrate. It has been recently shown that LIFT can also be used to transfer materials from liquid films. This widened its field of application to biosensors manufacturing, where small amounts of biomolecules-containing solutions have to be deposited with high precision on the sensing elements. However, there is still little knowledge on the physical processes and parameters determining the characteristics of the transfers.In this work, different parameters and their effects upon the transferred material were studied. It was found that the deposited material corresponds to liquid droplets which volume depends linearly on the laser pulse energy, and that a minimum threshold energy has to be overcome for transfer to occur. The liquid film thickness was varied and droplets as small as 10 μm in diameter were obtained. Finally, the effects of the variation of the film to substrate distance were also studied and it was found that there exists a wide range of distances where the morphology of the transferred droplets is independent of this parameter, what provides LIFT with a high degree of flexibility.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,