Article ID Journal Published Year Pages File Type
5369786 Applied Surface Science 2007 11 Pages PDF
Abstract

Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,