Article ID Journal Published Year Pages File Type
5369808 Applied Surface Science 2007 6 Pages PDF
Abstract

The influence of chain lengths on interfacial performances of polyarylacetylene (PAA)/silica glass composites was studied. In order to obtain different chain lengths on substrates, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane were grafted onto silica glass surface. Topographies of silica glass surface and the wetting ability of PAA resin on silica glass surface were characterized by atomic force microscopy (AFM) and surface free energy along with contact angles, respectively. At the same time, the interfacial adhesion was evaluated by shear strength testing. The failure mechanisms of composites were also analyzed by fracture morphologies. The results of the study indicate that with chain lengths of coupling agents on silica glass surface increasing, interfacial shear strengths of PAA/silica glass composites increase, while the wetting ability of PAA resin on silica glass surface decreases. The main mechanism for the improvement of the interfacial adhesion is physical entanglement interaction between the chain of coupling agent and the chain of PAA resin.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,