Article ID Journal Published Year Pages File Type
5369935 Applied Surface Science 2006 6 Pages PDF
Abstract

The γ phase of the erbium-hydrogen system is a hexagonal trihydride that is not predicted to be stable at room temperature without an overpressure of hydrogen gas. Herein, we report the creation of both, a thin film and powder of erbium trihydride that is metastable at ambient conditions. The presence of the hexagonal γ phase was determined by X-ray diffraction (XRD). The ratio of the total moles of hydrogen isotopes (hydrogen and deuterium) to moles of erbium, (H + D):Er, have been confirmed by elastic recoil detection (ERD)/Rutherford backscattering spectroscopy (RBS). Auger electron spectroscopy (AES) depth profiles and X-ray photoelectron spectroscopy (XPS) revealed the presence of an oxide layer that may account for the metastable behavior of the thin film.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,