Article ID Journal Published Year Pages File Type
5369959 Applied Surface Science 2006 5 Pages PDF
Abstract

The microstructure of vanadium oxide nanotubes (VONTs) have been characterized using FTIR spectroscopy and Raman spectroscopy. The temperature effects on the VONTs were studies by changing the laser irradiation power and thermal annealing temperature in air. Raman spectroscopy studies showed that the VONTs could be decomposed even at low laser power irradiation. Also, together with scanning electron microscopy, it was found that thermal annealing in air could lead to the collapse of the tubular structure and convert the nanotubes into V2O5 nanoparticle. It was found that the thermal stability of VONTs was relatively low and the tubular morphology was destroyed at temperatures higher than 300 °C. The spectroscopic analyses showed that the Raman signature of the VONTs could be established for probing tubular structure.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,