Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5369987 | Applied Surface Science | 2006 | 6 Pages |
X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of the anode deposits in a miniature magnetron ion pump. The pump was mounted on an UHV system with the ultimate pressure of 1Â ÃÂ 10â9Â mbar. A stable discharge was established in the nitrogen atmosphere with some traces of CO at about 10â7Â mbar. The cathode was made of pure titanium. The sputtered titanium atoms deposited on the anode, where they reacted with gases to form a film of titanium compounds. The thickness of the deposited titanium layer on the anode was about 100Â nm. The results from XPS investigations indicate that active gases such as O2 and N2 react with Ti forming TiO2 and TiN. While carbon containing molecules just adsorb on the surface and do not form carbide. In the bulk of the deposited layer almost pure TiN was found with some traces of oxygen and carbon. The part of carbon was bonded to TiC, which can be caused by ion sputtering during the depth profiling.