Article ID Journal Published Year Pages File Type
5370067 Applied Surface Science 2006 6 Pages PDF
Abstract
Amorphous carbon nitride films, prepared using a dc facing-target reactive sputtering system, were annealed at temperatures up to 650 °C for 1 h in vacuum. The effects of heat treatment on the films, i.e. changes in the composition and structure, were investigated. It was found that annealing at temperatures ranging from 300 to 650 °C, results in the N content decreasing from ∼33 at.% in the as-deposited films to ∼5 at.%. The loss of N, especially those bonded to sp3C, causes the rearrangement of the film's microstructure, and the dual effects of the thermal annealing are quite noticeable: (1) annealing destroys most graphite-like structures, and more non-aromatic sp2C components and C≡N terminal structures are formed at higher annealing temperatures, contributing to a looser film's structure. (2) Annealing makes the remaining aromatic sp2C structure become more order. The results also reveal that N atoms bonded to sp3C are easily removed with the increasing temperature compared to those bonded to sp2C, which indicates that Nsp2C bonds had a higher thermal stability than Nsp3C.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,