Article ID Journal Published Year Pages File Type
5370270 Applied Surface Science 2006 5 Pages PDF
Abstract

A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO2) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO2 nanostructures arrays, a unit area is of ∼500 μm × 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm2. This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , , ,