Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5370284 | Applied Surface Science | 2006 | 7 Pages |
Using kinetic Monte Carlo method, we have simulated a pulsed energetic growth process in pulsed laser deposition. During the growth of film, substrate temperature mainly influences upon film morphology by directly enhancing the adatom mobility through the temperature-dependent thermal vibration. By contrast, the effect of incidence kinetic energy on film growth is complex resulting from the collisions between the incident particles and the adatoms. The results show that improving incident kinetic energy cannot significantly accelerate the migration rate of adatom but change surface microstructure and promote single adatom formation resulting in more island aggregation density. Moreover, since pulse-influx characterizes pulsed laser deposition, the intensity per pulse contributes to the evolvement of nucleation density and the results illustrate that a general scaling law different from ordinary power law still exists in energetic growth of pulsed laser deposition.