Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5370335 | Applied Surface Science | 2006 | 6 Pages |
Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O2 and H2O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many CC bonds are transformed into more polar oxygen containing functional groups.