Article ID Journal Published Year Pages File Type
5370341 Applied Surface Science 2006 5 Pages PDF
Abstract

The effect of the heat treatment on the corrosion behaviour of amorphous Fe85Cr5P6C3Si alloy in 0.5 M H2SO4 has been investigated using electrochemical techniques. Heat treatment was carried out at temperatures varying between 250 and 650 °C at different times 30, 60, 120 and 240 min. The evolution of crystallization processes after annealing was identified by differential thermal analysis (DTA) and by X-ray diffraction (XRD). The diagrams obtained by DTA show that the structure of samples treated at high temperature changes towards a crystalline state. This crystallization phenomenon is confirmed by the analysis with the XRD. The results obtained from the polarization curves reveal that for all the studied temperatures of annealing, Fe-Cr-P-C-Si exhibits a phenomenon of passivation without breakdown of passivity. The best corrosion resistance is obtained at the temperature of annealing 350 °C. For an annealing at higher temperatures, Fe85Cr5P6C3Si becomes less corrosion resistant than same amorphous alloy treated with temperatures lower than 350 °C.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,