Article ID Journal Published Year Pages File Type
5370635 Biophysical Chemistry 2017 7 Pages PDF
Abstract

•In methanol/water mixtures both α-helix- and PPII-rich fibrillar aggregates of PLL are present.•Transition between both types of fibrils is triggered by changes in methanol to water ratio.•The presence of FPh molecules did not inhibit the creation of both types of PLL fibrils.

Fourier-transform infrared, vibrational circular dichroism spectroscopy and transmission electron microscopy are used to follow the structural changes of pure and fluphenazine (FPh)-mixed poly-l-lysine (PLL) triggered by variations of the methanol to water ratio in solvent mixtures. FPh molecules are used as an effective psychotic drug but with a strong Parkinson's-related side effect. To answer the question whether FPh molecules can modify the fibril development, the PLL polypeptide was used as a model of α-helix- and PPII-rich fibrils. It was stated that the presence of FPh molecules did not inhibit the creation of both types of PLL fibrils with clustering features. The methanol-poor aqueous solutions promote the formation of extended polyproline II (PPII) helices; however, the methanol-rich aqueous solutions induce the development of α-helices of both pure and FPh-mixed PLL. Unpredicted and interesting features of PLL fibrillogenesis are evidenced by the formation of uncommon fibrillar aggregates, which are developed in methanol/water solvents from PLL molecules rich in either α-helix or PPII structures. Possibility of PLL molecules to form β-sheet-, α-helix- and PPII-rich fibrils demonstrating that fibrillogenesis is a common phenomenon, and fibrillar aggregates can be based on all of the basic protein secondary structures.

Graphical abstractDownload high-res image (156KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,