Article ID Journal Published Year Pages File Type
5371704 Biophysical Chemistry 2010 12 Pages PDF
Abstract

Small angle X-ray scattering (SAXS) technique, supported by light scattering measurements and spectroscopic data (circular dichroism and fluorescence) allowed us to restore the 3D structure at low resolution of defatted human serum albumin (HSA) in interaction with ibuprofen. The data were carried out on a set of HSA solutions with urea concentrations between 0.00 and 9.00 M. The Singular Value Decomposition method, applied to the complete SAXS data set allowed us to distinguish three different states in solution. In particular a native conformation N (at 0.00 M urea), an intermediate I1 (at 6.05 M urea) and an unfolded structure U (at 9.00 M urea) were recognized. The low-resolution structures of these states were obtained by exploiting both ab initio and rigid body fitting methods. In particular, for the protein without denaturant, a conformation recently described (Leggio et al., PCCP, 2008, 10, 6741-6750), very similar to the crystallographic heart shape, with only a slight reciprocal movement of the three domains, was confirmed. The I1 structure was instead characterized by only a closed domain (domain III) and finally, the recovered structure of the U state revealed the characteristic feature of a completely open state. A direct comparison with the free HSA pointed out that the presence of the ibuprofen provokes a shift of the equilibrium towards higher urea concentrations without changing the unfolding sequence. The work represents a type of analysis which could be exploited in future investigations on proteins in solution, in the binding of drugs or endogenous compounds and in the pharmacokinetic properties as well as in the study of allosteric effects, cooperation or anticooperation mechanisms.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,