Article ID Journal Published Year Pages File Type
5371802 Biophysical Chemistry 2009 8 Pages PDF
Abstract

The changes in the partial pressures of oxygen and carbon dioxide (PO2 and PCO2) during blood circulation alter erythrocyte metabolism, hereby causing flux changes between oxygenated and deoxygenated blood. In the study we have modeled this effect by extending the comprehensive kinetic model by Mulquiney and Kuchel [P.J. Mulquiney, and P.W. Kuchel. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement, Biochem. J. 1999, 342, 581-596.] with a kinetic model of hemoglobin oxy-/deoxygenation transition based on an oxygen dissociation model developed by Dash and Bassingthwaighte [R. Dash, and J. Bassingthwaighte. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels, Ann. Biomed. Eng., 2004, 32(12), 1676-1693.]. The system has been studied during transitions from the arterial to the venous phases by simply forcing PO2 and PCO2 to follow the physiological values of venous and arterial blood. The investigations show that the system passively follows a limit cycle driven by the forced oscillations of PO2 and is thus inadequately described solely by steady state consideration. The metabolic system exhibits a broad distribution of time scales. Relaxations of modes with hemoglobin and Mg2+ binding reactions are very fast, while modes involving glycolytic, membrane transport and 2,3-BPG shunt reactions are much slower. Incomplete slow mode relaxations during the 60 s period of the forced transitions cause significant overshoots of important fluxes and metabolite concentrations - notably ATP, 2,3-BPG, and Mg2+. The overshoot phenomenon arises in consequence of a periodical forcing and is likely to be widespread in nature - warranting a special consideration for relevant systems.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,