Article ID Journal Published Year Pages File Type
5372191 Biophysical Chemistry 2006 11 Pages PDF
Abstract

The local diffusion constant of K+ inside the Gramicidin A (GA) channel has been calculated using four computational methods based on molecular dynamics (MD) simulations, specifically: Mean Square Displacement (MSD), Velocity Autocorrelation Function (VACF), Second Fluctuation Dissipation Theorem (SFDT) and analysis of the Generalized Langevin Equation for a Harmonic Oscillator (GLE-HO). All methods were first tested and compared for K+ in bulk water-all predicted the correct diffusion constant. Inside GA, MSD and VACF methods were found to be unreliable because they are biased by the systematic force exerted by the membrane-channel system on the ion. SFDT and GLE-HO techniques properly unbias the influence of the systematic force on the diffusion properties and predicted a similar diffusion constant of K+ inside GA, namely, ca. 10 times smaller than in the bulk. It was found that both SFDT and GLE-HO methods require extensive MD sampling on the order of tens of nanoseconds to predict a reliable diffusion constant of K+ inside GA.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,