Article ID Journal Published Year Pages File Type
5372425 Biophysical Chemistry 2006 9 Pages PDF
Abstract

A classical molecular dynamics study of the electron transfer protein azurin, covalently bound to a gold substrate through its native disulphide group, is carried out at full hydration. With the aim of investigating the effects on the protein structure and dynamics as induced by the presence of an electric field, simulations are performed on neutral, positively and negatively charged substrates. A number of parameters, such as the average structure, the root mean square deviations and fluctuations, the intraprotein hydrogen bonds and solvent accessible surface of the protein, are monitored during 10 ns of run. The orientation, the height and the lateral size of the protein, with respect to the substrate are evaluated and compared with the experimental data obtained by scanning probe nanoscopies. The electron transfer properties between the copper redox center and the disulphide bridge bound to the substrate are investigated and briefly discussed.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,