Article ID Journal Published Year Pages File Type
5372501 Biophysical Chemistry 2006 14 Pages PDF
Abstract

Drug-drug metabolic interactions can result in unwanted side effects, including reduced drug efficacy and formation of toxic metabolic intermediates. In this work, thermodynamic constraints on non-equilibrium metabolite concentrations are used to reveal the biochemical interactions between the metabolic pathways of ethanol and acetaminophen (N-acetyl-p-aminophenol), two drugs known to interact unfavorably. It is known that many reactions of these pathways are coupled to the central energy metabolic reactions through a number of metabolites and the cellular redox potential. Based on these observations, a metabolic network model has been constructed and a database of thermodynamic properties for all participating metabolites and reactions has been compiled. Constraint-based computational analysis of the feasible metabolite concentrations reveals that the non-toxic pathways for APAP metabolism and the pathway for detoxifying N-acetyl-p-benzoquinoneimine (NAPQI) are inhibited by network interactions with ethanol metabolism. These results point to the potential utility of thermodynamically based profiling of metabolic network interactions in screening of drug candidates and analysis of potential toxicity.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,