Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5372798 | Chemical Physics | 2017 | 13 Pages |
We investigate the electronic decay of an Ar 3s-1 vacancy in medium sized ArKr clusters. The only energetically accessible, radiationless decay mechanism is Electron Transfer Mediated Decay Three (ETMD3). Here, the argon vacancy is filled by an electron from one krypton atom, and the excess energy is transferred to a second krypton atom which consequently emits an electron. For the theoretical calculation of ETMD3 spectra, in a bottom-up approach, we study the dependence of the decay width on the geometry of elementary sets of three atoms, from which any cluster can be composed. We simulate the ETMD3 spectra of medium sized ArKr clusters and compare the resulting spectra to experimental ETMD electron spectra presented earlier (Förstel et al, 2011) and in this work. We show that ETMD3 is the dominating relaxation mechanism for the cases studied here. Experimental secondary electron spectra from ArKr clusters are compared to pure Ar and pure Kr clusters.