Article ID Journal Published Year Pages File Type
5372862 Chemical Physics 2016 9 Pages PDF
Abstract

BiOX/NaBiO3 (X = Cl, Br, I) heterostructures were synthesized by a simple chemical etching method using haloid acid as etching agents to react with NaBiO3. Several characterization tools including X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS) were employed for structural and composition analyses of the samples. The as-prepared heterogeneous samples exhibited more efficient photocatalytic activities than pure NaBiO3 and BiOX (X = Cl, Br, I) for the degradation of Rhodamine B (RhB) under visible light (or UV light) irradiation, which could be attributed to the formation of the p-n junction between p-BiOX (X = Cl, Br, I) and n-NaBiO3, which effectively suppresses the recombination of photo-generated electron-hole pairs. Terephthalic acid photoluminescence (TA-PL) probing test and trapping agents experiments demonstrated that OH (or h+) was the dominant reactive species depend on the different band gap structure of the p-n heterojunctions. Possible transfer processes of photo-generated charge carriers were proposed based on the band structures of BiOX/NaBiO3 (X = Cl, Br, I) and the experimental results.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,