Article ID Journal Published Year Pages File Type
5373069 Chemical Physics 2016 18 Pages PDF
Abstract
In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS2. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS2 when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS2 can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS2 in electronics and optoelectronics.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,