| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 5374978 | Chemical Physics | 2010 | 11 Pages | 
Abstract
												We study a conjecture by Fendley, Ludwig and Saleur for the nonlinear conductance in the boundary sine-Gordon model. They have calculated the perturbative series of twisted partition functions, which require particular (unphysical) imaginary values of the bias, by applying the tools of Jack symmetric functions to the “log-sine” Coulomb gas on a circle. We have analyzed the conjectured relation between the analytically continued free energy and the nonlinear conductance in various limits. We confirm the conjecture for weak and strong-tunneling, in the classical regime, and in the zero temperature limit. We also shed light on this special variant of the ImF-method and compare it with the real-time Keldysh approach. In addition, we address the issue of quantum statistical fluctuations.
											Related Topics
												
													Physical Sciences and Engineering
													Chemistry
													Physical and Theoretical Chemistry
												
											Authors
												Jens Honer, Ulrich Weiss, 
											