Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5375041 | Chemical Physics | 2010 | 11 Pages |
Abstract
A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincaré surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Kenneth G. Kay,