Article ID Journal Published Year Pages File Type
5375229 Chemical Physics 2009 6 Pages PDF
Abstract
Individual hydrogen bond (HB) energies have been estimated in several systems involving multiple HBs such as adenine-thymine and guanine-cytosine using electron charge densities calculated at X⋯H hydrogen bond critical points (HBCPs) by atoms in molecules (AIM) method at B3LYP/6-311++G∗∗ and MP2/6-311++G∗∗ levels. A symmetrical system with two identical H bonds has been selected to search for simple relations between ρHBCP and individual EHB. Correlation coefficient between EHB and ρHBCP in the base of linear, quadratic, and exponential equations are acceptable and equal to 0.95. The estimated individual binding energies EHB are in good agreement with the results of atom-replacement approach and natural bond orbital analysis (NBO). The EHB values estimated from ρ values at H⋯X BCP are in satisfactory agreement with the main geometrical parameter H⋯X. With respect to the obtained individual binding energies, the strength of a HB depends on the substituent and the cooperative effects of other HBs.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,