Article ID Journal Published Year Pages File Type
5375305 Chemical Physics 2010 5 Pages PDF
Abstract
The reaction of the O3 addition to double bonds of the limonene in the gas phase has been investigated using ab initio methods. Four different possibilities for the O3 addition to the double bonds, which correspond to the two C-C double bonds (endocyclic or exocyclic), and two different orientations of each C-C double bonds, have been considered. The corresponding rate constants have been calculated using the transition-state theory (TST) at the CCSD(T)/6-31G(d) + CF//B3LYP/6-311+G(d,p) level of theory. The high-pressure limit of the overall rate constant at 298 K is found to be ∼2.92 × 10−16 cm3 molecule−1 s−1 that is in a good agreement with the experimental data, and the rate constants of the four individual reaction channels turn out to be 2.1 × 10−16 cm3 molecule−1 s−1, 1.2 × 10−17 cm3 molecule−1 s−1, 6.5 × 10−17 cm3 molecule−1 s−1 and 5.1 × 10−18 cm3 molecule−1 s−1 for 1-endo, 2-endo, 1-exo and 2-exo, respectively.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,