Article ID Journal Published Year Pages File Type
5375738 Chemical Physics 2009 6 Pages PDF
Abstract
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (λ) of light (“small-particle limit”). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/λ ratio. We have identified the “small-particle limit” in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/λ ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,