Article ID Journal Published Year Pages File Type
5376283 Chemical Physics 2007 6 Pages PDF
Abstract
The dissociative excitation reaction of BrCN induced by the products of the electron cyclotron resonance (ECR) plasma flow of He was studied based on the electrostatic-probe measurements and on the optical emission spectra of the B2Σ+ − X2Σ+ transition of CN radicals. The partial pressures of He and BrCN were 3 and 1 mTorr, respectively, and the partial pressure of H2O, PH2O, was in the range of 0.0-0.6 mTorr. The electron density, ne, showed a negative dependence on PH2O as (2.63 ± 0.13) × 1012 − (0.23 ± 0.10) × 1012 m−3, and the electron temperature, Te, a positive dependence, (2.38 ± 0.36) − (4.51 ± 0.15) eV. The CN(B2Σ+ − X2Σ+) emission intensity showed a negative dependence on PH2O. Based on a kinetic analysis of these PH2O dependencies, the decomposition of BrCN does not proceed via electron impact; instead, decomposition proceeds via the processes involving He+ and/or He metastable atoms.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,