Article ID Journal Published Year Pages File Type
5376484 Chemical Physics 2007 7 Pages PDF
Abstract
Using electron-correlated wavefunction approaches and several pure and hybrid density functionals combined with three atomic basis sets, we have optimized the ground-state geometry of increasingly long polymethineimine oligomers presenting all-trans and gliding-plane symmetries. It turns out that MP2 bond length alternations (BLA) are in good agreement with higher-order electron-correlated wavefunction approaches, whereas, for both conformers, large qualitative and quantitative discrepancies between MP2 and DFT geometries have been found. Indeed, all the selected GGA, meta-GGA and hybrid functionals tend to overestimate bond length equalization in extended polymethineimine structures. On the other hand, self-interaction corrections included in the ADSIC framework provide, in this particular case, a more efficient approach to predict the BLA for medium-size oligomers.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,